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Introduction

The DSI3D-RCS code is  designed to numerically evaluate radar cross sections on
complex objects by solving Maxwell's curl equations in the time-domain and in three
space dimensions.  The code has been designed to run on the new parallel processing
computers as well as on conventional serial computers.

The DSI3D-RCS code is unique for the following reasons:

• Allows the use of unstructured non-orthogonal grids,

• Allows a variety of cell or element types,

• Reduces to be the Finite Difference Time Domain (FDTD) method when
orthogonal grids are used,

• Preserves charge or divergence locally (and globally),

• Is conditionally stable,

• Is non-dissipative,

• Is accurate for non-orthogonal grids.

This method is derived using a Discrete Surface Integration (DSI) technique[1]. As
formulated, the DSI technique can be used with essentially arbitrary unstructured grids
composed of convex polyhedral cells. This implementation of the DSI algorithm allows
the use of unstructured grids that are composed of combinations of non-orthogonal
hexahedrons, tetrahedrons, triangular prisms and pyramids. This algorithm reduces to the
conventional FDTD method when applied on a structured orthogonal hexahedral grid.



2 DSI3D Theory Manual

Overview

Discrete Surface Integration Method
We begin by assuming that we wish to solve Maxwell’s curl equations on an irregular
three-dimensional domain R that has a boundary surface denoted by S. We will also
assume that the domain R has been discretized into convex polyhedrons. The figure
below shows a twisted waveguide discretized using hexahedral cells.

Twisted waveguide discretized using distorted hexahedral cells.

This is an example of a problem type that we wish to consider that could not be easily
solved using the conventional orthogonal grid FDTD method. Maxwell’s curl equations
are given by:

∂D
∂t

= ∇ × H (1)

∂B
∂t

= −∇ × E (2)

where for linear isotropic materials the vectors D, E, B and H are related by the
constitutive relationships

D = εE

B = µH

The linear isotropic material properties are: ε, the permittivity, and µ, the permeability.
Like the conventional FDTD method, the DSI methods can be generalized to treat more
complex materials. However, for the purposes of this discussion, we will assume that the
linear isotropic material properties are piecewise constant over the domain R. We will
also assume that S  is a perfectly conducting surface, i.e., Etan = 0 . This is sufficient to
guarantee that the problem is well-posed.
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We will derive our new DSI algorithm for unstructured grids formed from convex
polyhedral cells. We restrict the choice of cell types to convex polyhedrons whose edges
are straight lines. The faces of the polyhedrons are not necessarily planar and we make
the assumption that any face in the assembled grid is shared by at most two cells. These
are very weak restrictions and allow a great deal of flexibility.

The DSI method requires the use of a dual grid. The dual grid and its structure are
completely derivable from a knowledge of the primary grid. For each cell of the primary
grid, we define its barycenter to be a node of the dual grid. The barycenter of a cell is
located at the average of the coordinates of the nodes which define the cell. We construct
edges of the dual grid by connecting barycenters of adjacent cells with straight lines
passing through each of the interior cell faces of the primary grid. The barycenters of two
cells will be connected (i.e., form a dual edge) if and only if the two cells share a
common face. For primary cell faces which lie on the problem boundary, S, we form a
corresponding half dual edge by joining the cell barycenter to a point on the face by
moving from the cell barycenter in the direction of the face area normal vector. There is a
one-to-one correspondence between the nodes, edges, faces, and cells of the primary grid
to the cells, faces, edges and nodes of the dual grid, respectively. The dual face associated
with a primary edge has as its perimeter the dual edges associated with all of the primary
faces which share the given primary edge. The dual cell associated with a primary node
has as its surface the dual faces which correspond to all of the primary edges which share
the primary node. Though not necessary for the definition of the new algorithm, we
recommend that the variations in grid sizes and angles be sufficiently smooth so that the
primary and dual edges actually intersect their corresponding dual and primary faces,
respectively. Degradation of solution accuracy has been observed when this condition is
not met. The following figure shows an eight cell hexahedral primary grid and its one
interior dual cell.
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Primary grid consisting of eight hexahedral cells and its one interior dual cell.

Our DSI solution variables will be associated with the edges and faces of the primary grid
and also with the edges and faces of the dual grid. The quantity associated with a primary
cell edge is the projection of the electric field vector onto that edge, i.e., E ⋅ s , where s is
the primary cell edge vector. The magnetic field projection H ⋅ s*  is associated with a dual
cell edge where s*  is the dual cell edge vector. In addition, with each primary grid face
we will associate a full magnetic field vector B, and with each dual grid face we will
associate a full electric displacement vector D. We will denote with an asterisk, *,
geometric quantities associated with the dual grid. The following figure depicts these
associations.
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E  s Locations and

B LocationsH  s*  and

D

Dual Cell

Primary Cell

Discrete electric and magnetic field variable locations relative to the primary and
dual grid cells.

We remark that these associations of field quantities with the primary and dual grid
locations are entirely reciprocal and that the respective locations of the magnetic and
electric field quantities could be interchanged. The particular choice of which field
quantities to associate with each grid is best determined by deciding which field
quantities one desires to have on the exterior boundary surfaces where the boundary
conditions will be imposed. Since we are assuming that our domain R is surrounded by a
perfect electric conductor, we will associate the electric and magnetic field quantities as
described above. For open region problems, the choice for the location of the field
quantities will depend on the particular radiation boundary condition algorithm used.

We will now describe the equations and algorithmic process used to advance in time the
magnetic field vectors which are associated with each primary grid face. We assume that
the time variable has been discretized by the choice of a time step size, ∆t  . Superscripts

on field quantities will denote their time state with Dk = D t k( ) = D k∆t( ) . As we will be
using a leapfrog style time integration method, the magnetic field vectors will be

associated with half-integer times, t k + 1
2 , and the electric field vectors will be associated

with integer times, t k . For a particular primary cell face, we define the area-normal vector

to be N = n dS∫ , where n is a unit surface normal defined by the right-hand rule in

relation to a specified circulation around the perimeter of the cell face. It is easily shown
that N is uniquely determined by the perimeter of the surface and is independent of the
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actual interior surface shape. This fact allows for simple computations of N using
piecewise planar approximating surfaces. Using (2) for the primary grid face, F, we
define the time derivative of the normal component of the magnetic field to be:

dBk

dt
⋅ NF ≡ ∂Bk

∂t
⋅ n





F∫ dS = − ∇ × Ek( )

F∫ ⋅ n dS

= Ek ⋅ dl
F∫ (3)

Equation (3) allows us to obtain the time derivative of the normal component of the
magnetic field on a primary face, F, from the electric field projections onto the perimeter
edges of that face. The last integral in (3) is easily computed numerically by summing
these edge projections. This can be done for each primary cell face.

The next step in the algorithm is to use these time derivatives of the normal components
of the magnetic field to compute a full vector value of dBF

k dt  for the primary cell face,
F. We will assume that the face F is defined by P primary edges and nodes, with the ith

node being located at the intersection of the consecutive edges i and m = i mod P( ) + 1.
Also, we assume that the face F is shared by Nc  primary grid cells, where by
construction: Nc = 1 for boundary faces and Nc = 2   for interior faces. We will denote by
Fi,j, the face of cell j (other than F) which shares edge i. The following figure depicts
these associations for a dual edge associated with a primary face defined by five primary
edges.
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.

Cell 1

Cell 2

NF1,1

NF

3,2
NF

2,2
NF

5,2
NF

1,2
NF

4,2
NF

2,1
NF

3,1
NF

4,1
NF

5,1
NF

edge 1

edge 2

edge 3

edge 4

edge 5

The primary grid faces used to time advance a magnetic field vector.

At each of the P nodes of face F, we will unfold Nc vector values  dBij
k dt   by solving the

3 × 3 system of equations:

dBij
k

dt
⋅ NF = − Ek ⋅ dl

F
∫

dBij
k

dt
⋅ NFi, j

= − Ek ⋅ dl
Fi, j

∫
dBij

k

dt
⋅ NFm, j

= − Ek ⋅ dl
Fm, j

∫

(4)
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where i = 1,..., P, j = 1,..., Nc , and m = i mod P( ) + 1. For this primary face, F, which is

shared by Nc  primary cells, there are P Nc   different values of dBij
k dt , which will now

be averaged or interpolated to form a single dBF
k dt  vector for the face. The particular

averaging or interpolation we use is given by:

dBF
k

dt
=

wij

dBij
k

dti=1

P

∑
j =1

Nc

∑

wij
i=1

P

∑
j =1

Nc

∑
(5)

where the weight

wij = NF ⋅ NFi, j
× NFi+1, j( ),

represents the volume of the jth local coordinate system at node i of face F. We note also
that the weight wij is the determinant of the system of equations (4).  We also comment
that equation (5) has been derived assuming the vector orientations shown in the
preceding figure.  For other orientations, appropriate modifications of the signs of the
various terms must be properly accounted for.

The full B vector for each primary face, F, may now be advanced in time using the time-
centered leapfrog algorithm:

Bk + 1
2 = Bk − 1

2 + ∆t
dBk

dt
, (6)

where ∆t is the specified time step size. Finally, a time advanced value of the projection

of the magnetic field onto the dual edge, s* , which penetrates the primary cell face, F, is
easily obtained using:

H ⋅ s*( )k + 1
2 = Bk + 1

2 ⋅ s*

µ
, (7)

where µ is an appropriate permeability value. If the permeability is discontinuous then a
value can be determined by an appropriate average as is done for FDTD algorithms.

It is important to note that the first equation in (4) (namely, the equation coming from the
given face F) is common to all of the sets of 3 × 3 equations being used in the time
advance process for the face. This implies that the averaged value (5) of the time
derivative of the magnetic field vector for F also satisfies this equation. It is from this
aspect of the numerical algorithm that divergence or charge conservation can be
demonstrated. If we integrate the divergence of (6) over a primary cell, C, we obtain

∇ ⋅ Bk + 1
2( )

C
∫ dV = ∇ ⋅ Bk − 1

2( )
C
∫ dV + ∆t ∇ ⋅ dBk

dt






C
∫ dV. (8)
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Considering the last integral term in (8) we have

∇ ⋅ dBk

dt






C
∫ dV = dBk

dt
⋅ n





∂C

∫ dS = − Ek

Fi

∫
i

∑ ⋅ dl = 0, (9)

where the sum runs over all the faces Fi of the closed cell C. The last sum is zero because
each edge of C will be traversed twice, once in each direction. Thus we see that the local
divergence of the time derivative of the magnetic field vector is zero and so if the initial
fields have zero local divergence, then (8) and (9) prove that zero divergence of the time
advanced fields will be conserved.

To time advance the electric field vectors which are associated with each dual cell face,
we proceed in a manner which is exactly “dual” to the magnetic field procedure described

above. For any dual cell face, we define the dual area-normal vector to be N* = n*∫ dS*,

where n*  is a unit dual surface normal defined by the right-hand rule in relation to a
specified circulation around the perimeter of the dual cell face. Using (1) for a given dual
grid face F* , we define the time derivative of the normal component of the electric
displacement vector to be:

   
dDk + 1

2

dt
⋅ N

F*

* ≡ ∂Dk + 1
2

∂t
⋅ n*







dS*

F*
∫ = ∇ × Hk + 1

2( )
F*
∫ ⋅ n*dS* = Hk + 1

2 ⋅ dl*

F*
∫ (10)

Again, the last integral in (10) is easily computed by summing the projections of the
magnetic field on the edges defining the dual cell face. This can be done for each dual
cell face.

The next step in the algorithm is to use these time derivatives of the normal components
of the electric field to compute a full vector value of dD

F*

k dt  for the dual cell face, F* .

We will assume that the face F*  is defined by P* dual edges and nodes, with the ith dual

node being located at the intersection of dual edges i and m = i mod P*( ) + 1. Also, we

assume that the dual face F*  is shared by Nc
*  dual cells. We will denote by Fi, j

* , the dual

face of dual cell j (other than F* ) which shares dual edge i. The above figure with all
quantities replaced by their appropriate duals would depict these associations. At each of

the P* dual nodes of dual face F* , we will unfold Nc
*  vector values dDij

k + 1
2 dt  by solving

the 3 × 3 system of equations:
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dDij
k + 1

2

dt
⋅ N

F*

* = Hk + 1
2

F*
∫ ⋅ dl*

dDij
k + 1

2

dt
⋅ N

Fi, j
*

* = Hk + 1
2

Fi, j
*
∫ ⋅ dl*

dDij
k + 1

2

dt
⋅ N

Fm, j
*

* = Hk + 1
2

Fm, j
*
∫ ⋅ dl*,

(11)

where i = 1,..., P*  , j = 1,..., Nc
*  and m = i mod P*( ) + 1. For this dual face, F* , which is

shared by Nc
*  dual cells, there are P*Nc

*  different values of dDij
k + 1

2 dt , which will now be

averaged or interpolated to form a single dD
F*

k + 1
2 dt  vector for the dual face. The

averaging methods (5) used for the magnetic fields are also used for the electric fields.

The full D vector for the dual face, F* , may now be advanced in time using the time-
centered leapfrog algorithm:

Dk +1 = Dk + ∆t
dDk + 1

2

dt
, (12)

where ∆t is the specified time step size. Finally, a time advanced value of the projection

of the electric field onto the primary edge, s, which penetrates the dual cell face, F* , is
easily obtained using:

E ⋅ s( )k +1 = Dk +1 ⋅ s
ε

, (13)

where ε is an appropriate permittivity value. The local conservation of divergence for the
electric field can be easily shown in a manner similar to that described above for the
magnetic fields.

Equations (3)-(7) for the magnetic field quantities, equations (10)-(13) for the electric
field quantities and a linear averaging or interpolation method (5), constitute the new
divergence conserving DSI approximation methods.

We note that significant simplifications occur when a primary edge is orthogonal to its
dual face, or “dually”, when a dual edge is orthogonal to its primary face. When this
occurs, the vectors s and NF*

*  (or s*  and NF ) are aligned. The time advance of the edge
projected field value may be performed directly using (3) (or (10)) and the averaging (5)
may be completely bypassed. Stated another way, when the above orthogonality
conditions exist, the time advance of E ⋅ s  (or H ⋅ s*) may be accomplished using a single
line integral around the perimeter of the face F*  (or F). It is this fact that demonstrates
that the DSI methods are completely equivalent to the canonical FDTD methods when
orthogonal hexahedral based grids are used. Therefore, the DSI methods are direct
generalizations of the orthogonal grid FDTD methods for unstructured nonorthogonal
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grids. These orthogonality conditions may occur locally for only a relatively few edges or
may occur globally for the entire grid. They occur globally when structured grids
composed of orthogonal hexahedral cells are used. They also occur globally when grids
are used which are three dimensional analogs of two-dimensional grids formed from
Delaunay triangles and their dual Voronoi polygons.
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Boundary Conditions

Perfect Electric Conductor  (PEC) boundary conditions are some of the most commonly
used boundary conditions in computing RCS values for metallic objects.  PEC conditions
require that the total tangential electric field be set to zero on the PEC surface.  This is
easily accomplished because the tangential electric field components, E ⋅ s , live on the
boundary and we simply set E ⋅ s = Etan = 0  for the total field.  If the grid is composed of
orthogonal hexahedral cells, this is all that is required.  For nonorthogonal grids, another
subtlety arises in updating primary cell edge values for edges which have an endpoint on
the problem boundary surface and the other endpoint in the problem interior.  As has
been depicted earlier, the update of these edges requires the use of the two dual cells
which surround the endpoints of the edge.  The dual cell which surrounds the interior
endpoint of the edge is a typical dual cell and is treated in the usual manner.  However,
the dual cell associated with the edge endpoint which lies on the problem boundary is
special in that most of its dual faces are half the normal size as they are clipped by the
boundary.  For these "clipped" dual faces (which are associated with boundary primary
edges) special care must be taken to guarantee that the values of the path integrals around
these faces are compatible with the PEC boundary condition.  Two items need to be
considered for compatibility.  First, the dual face area normal vector for the "clipped"
dual face must be tangent to the boundary surface.  This is readily accomplished by
carefully considering what the full "unclipped" dual face would be if the problem space
were extended beyond the actual boundary.  Second, the path integral of the total
magnetic field around the dual face must be zero as it is equal to the time derivative of the
total tangential electric field which is zero from the definition of the PEC.  In the
scattered field formulation, this means that the path integral of the scattered magnetic
field must be set proportional to the time derivative of the incident  tangential electric
field at the boundary in the direction of the dual face area normal vector.

Perfect Magnetic Conductor (PMC) symmetry plane boundary conditions are another
useful boundary condition for certain types of problems.  They frequently allow a
problem to be solved using a grid that is half as big as the full grid for the problem.
These conditions require that the total tangential magnetic field be set to zero on the
specified surface.  We desire that these conditions be applied on the surface of the
primary grid which is usually where tangential electric field information is specified.  We
accomplish this by using reflection principles and images which are inherent with this
type of planar boundary.  Specifically, the tangential magnetic fields and normal electric
fields have odd symmetry across the plane, and the normal magnetic fields and tangential
electric fields are of even symmetry across the plane.  Using these symmetries,
appropriate values of the full path integrals can be computed using only the half path
integrals which are in the computational domain.  With these appropriate path integrals,
values for the tangential electric field value which lie in the symmetry plane can be
updated on a time step by time step basis.



13 DSI3D Theory Manual

Radiation Boundary Conditions (RBC) are an absolute necessity for computing RCS
values in open region problems.  These conditions allow one to truncate the grid at a
reasonable distance from the scatterer and thus avoid having to discretize extremely large
volumes of space.  These conditions are designed to allow scattered EM wave to leave the
computational region without significant reflections.  Achieving good RBC conditions is
usually a very nontrivial process and much research has been performed looking for
better and better RBC algorithms.  No definitively "best" RBC algorithm has been
identified - even for orthogonal grid FDTD algorithms.  The situation for unstructured
nonorthogonal grid codes is much more difficult and the state of RBC algorithms for
these codes is still quite primitive.  We have tested the standard Mur[6] conditions and
Liao[5] conditions for the situation where we terminate the exterior of the computational
grid with several layers of structured and orthogonal hexahedral cells.  These conditions
work reasonably well but can impose considerable mesh generation difficulties in that it
can be quite nontrivial to effect the transition from a boundary conforming unstructured
and nonorthogonal grid to the structured and orthogonal portion of the grid where the
RBC is applied.  We have successfully implemented unstructured grid versions of several
first order RBCs such as Mur, Liao, and Higdon[4-6].  Each of these has been
parameterized so that it will minimize the backward reflection at a user-specified angle of
incidence. We have had difficulty adapting the second and higher order conditions to the
unstructured grid regime.  Attempts thus far have resulted in instabilities.
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The Farfield Transform for RCS

Far field potentials are well known in the frequency domain; we use the time domain
forms obtained by Kunz and Luebbers [2]

W
~

r̂R,t( ) = 1
4πRc

∂
∂t

n̂
S
∫ × H

~
t +

′r
~

• r̂ – R

c









 da













U~ r̂R,t( ) = 1
4πRc

∂
∂t

E~
S
∫ t +

′r~• r̂ – R

c







× n̂da












     ,

where n̂  is the normal vector on S, the integration surface completely enclosing the
scatterer, ′r

~
 is the point on the integration surface where the integrand is evaluated, and

r̂R  is the position of the far field evalution point.

From the potentials, U
~

 and W
~

,  the fields can be found accurate to 
1
R

 as

Eθ r̂R,t( ) = −ηWθ r̂R,t( ) − Uφ r̂R,t( )

These far fields can be computed by accumulating time histories of U
~

 and W
~

 at each far

field point, or by saving the time histories of E
~

 and H
~

 at all edges on the integration

surface.  In order to save in data transfer requirements in the parallel implementation, and

in intermediate file storage, we chose the former solution.
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Because a long time history of these vector potentials is required for wide-band RCS

results, a buffering mechanism has been developed to keep storage requirements to a

minimum.

A post-processor reads the vector potentials from binary files and computes the RCS.

The integration surface is chosen to be a set of faces on the primary grid that form a
closed surface that completely encloses the scatter. For each face, A

~
=− n̂da  is

approximated by the area normals that are available in DSI3D. Also needed in the
calculation are H

~
 and E

~
.  H

~
 is available at the centroid of each face because there is a

dual edge associated with each face in the primary grid. E
~

 is found at the midpoints of

the edges of each face; these values need to be interpolated to the centroid of the face.

Because these field values on the near field integration surface are different from those

obtained by the standard DSI solver (vectors instead of scalars), another set of solver

coefficients must be generated on each edge that contributes vector field values to the

integration over faces on the far field integration surface.

Because the retarded time of the fields on the integration surface is not an integral

multiple of the problem time step ∆t( ),  the time derivative of the integrand on a face of

the integration surface must be linearly interpolated.  For the U
~  equation at the mth  time

step and the jth face, this leads to:

U
~ l

= U
~ l

+
α j

4πRc ∆t( )
E
~ j

m × A
~ j

U
~ l+1

= U
~ l+1

+
1 − 2α j

4πRc ∆t( )
E
~ j

m × A
~ j

U
~ l+2

= U
~ l+2

+
α j − 1

4πRc ∆t( )
E
~ j

m × A
~ j
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where:  l = l j,m( ) = m + γ j + 1
2







− m0 + min
k ∈S γ k + 1

2






+ 1

α j = γ j + 1
2







− γ j − 1
2







and γ j =
R − r̂ • r

~ j

c ∆t( )

Due to the leapfrog time integration strategy for Maxwell’s equations, H
~

 lags E
~

 by half

of a time step.  For the W
~

 equation at the mth  time step and the jth face, this leads to:

W
~ k

= W
~ k

+
β j

4πRc ∆t( )
A
~ j

× H
~ j

m−1/2

     W
~ k+1

= W
~ k+1

+
1 − 2β j

4πRc ∆t( )
A
~ j

× H
~ j

m−1/2

   W
~ k+2

= W
~ k+2

+
β j − 1

4πRc ∆t( )
A
~ j

× H
~ j

m−1/2

where:  k = k j,m( ) = m + γ j  − m0 + min
i ∈S γ i  + 1

and β j = γ j  − γ j + 1

The final step before computing the radar cross section (RCS) is to Fourier transform the
incident pulse and the far field.  Then, we can compute the RCS as

σα~ β~
=

lim

R → ∞
4πR

β~• E~ r̂R,ω( )
2

α~• E~
inc ω( )

2

where α~  is the polarization of the transmitting radar antenna, β~  is the polarization of the

receiving radar unit, and E~
inc

 
is the E field of the incident Gaussian pulse.

Note that
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α~ = cos(α inc )θ̂ + sin(α inc )φ̂

β~ = cos(α far )θ̂ + sin(α far )φ̂

By convention, q=0 is along the + z axis, and u=0 is on the + x axis.



18 DSI3D Theory Manual

Parallel Processing and Problem
Partitioning

To efficiently use multiple processors on a parallel computer to solve any one problem, it
is required to split or partition the problem among the available processors.  With the
problem partitioned,  each processor can produce the solution for its part of the problem.
In order for this process to be efficient, there are to fundamental goals any partitioning
process.

• Each processor should have an equal workload.

• The amount of inter-processor communication required should be minimized.

For DSI3D, this partitioning ultimately divides up the primary and dual edge variables
E ⋅ s  and H ⋅ s* .  For some structured grids it is intuitively obvious how to partition the
problem so that the above stated goals are achieved.  For unstructured grids and
particularly for tetrahedral based grids adequate partitioning schemes are very non-
intuitive and difficult to construct.  Fortunately, recent work by H. Simon[3] has
produced some automatic approaches for solving this problem.

The new approach is termed a Recursive Spectral Bisection method (RSB). The details of
the RSB approach as well as comparisons with other approaches may be found in the
above references.  For DSI3D we have chosen to use the grid cells as the basic quantities
to be partitioned.  This is primarily done because there are significantly fewer cells than
edges and faces in the primary and dual grids.  This results in a smaller and more efficient
RSB process.

First, a graph of the connectivity of the cells is constructed.  We choose to define that two
cells are connected as meaning that they share a face (other possibilities are that they
share a node or an edge).  From the graph the so-called "Laplacian Matrix" is formed.
This matrix has a row and column for each cells in the grid.  For a given row, negative
ones are placed in the columns of the other cells which are connected to it.  The diagonal
entry is found be summing the non-diagonal entries and placing the absolute value of this
sum as the diagonal entry.

This matrix is always singular (has a zero eigenvalue).  This is easily seen  as a vector
consisting of all "ones" multiplied by the Laplacian matrix gives zero.  All of the other
non-zero eigenvalues are positive.  Using a Lanczos algorithm the next smallest
eigenvalue is computed and an eigenvector corresponding to this eigenvalue is found.
The median entry of the eigenvector is found and the problem is split in half by assigning
cells which correspond to eigenvector entries greater than the median value to one
processor and those which correspond to entries less than the median value to the other
processor.  One significant drawback to the RSB method is that it produces partitions for
numbers of processors which are a power of 2 only.
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This simple sounding approach actually works quite well in practice. There is
mathematical theory that states that if the original grid is connected that each of the
produced sub-partitions will also be connected.  Stated another way, each processor will
be working on a single sub-piece of the grid rather than a few cells here and a few more
from someplace distant in the grid.  There is also theory that shows that the partitioning is
close to optimal as far as the communication requirements go.  It also is guaranteed to
produce the same number of cells (±1) for each processor to process.
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Communication Strategy

Once each processor on the parallel computer has its sub-piece of the global grid defined,
the processor will be responsible for computing and/or updating all of the edge-based
variables which are associated with its piece of the grid.  We note that there will be some
duplication due to the fact that faces and edges which exist on a partition boundary will
necessarily be shared with the other processor(s) which "owns" the cell(s) on the other
side of the partition boundary.  In order for a processor to be able to update all of its
variables it will need have access to all of the other cells which share nodes on the
partition boundary. The next figure shows a 2D grid with a partition boundary depicted as
the heavy solid line.

Grid with processor partition depicted with heavy solid line

Other ProcessorsProcessor 0

As each processor does not know in the beginning what cells or processors it may be
surrounded by, each processor must discover these relationships by communicating with
the other processors. The first step in this process is that each processor identifies all of
its own boundary nodes and elements.  These nodes may be nodes which lie on the real
physical problem boundary or the partition boundary or both.  This boundary-element
data is then successively sent to every other processor.  At the same time as a processor
sends its boundary data it also receives the boundary data from another processor. A
processor then compares its own boundary data with that obtained from another processor
looking for matches between the boundary node sets.  When a match occurs, then data is
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stored indicating which elements need to be sent to the other processor and also which
elements need to be received from the other processor.  This process is repeated n-1 times
(where n is the number of processors being used) as if the processors were connected in a
"ring-like" manner.  After completion of the boundary identification stage, each processor
then actually sends all of its elements to the individual processors who need to have them.
Again at the same time, a processor is receiving from the other processors all of the
elements it requires.

0
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1 2

0 3

1 2

3 1
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Send Receive

Ringlike send / receive communication order for 
processor 0 to discover neighboring cells belonging 
processors 1-3.

At the conclusion of this boundary element exchange stage, each processor will now have
all of its original elements plus a layer of new elements which share its grid partition
boundaries.  At this point each processor has all of the geometry data which will be
required to perform time step updates of all of its original edge and dual edge values.  As
a final step in setting up the communication tables which will be required in the time
stepping update process, each processor must create a final communication table which
lists all of the actual edge and dual edge field values it must send/receive to/from other
processors.  This is readily generated from the previously generated boundary element
exchange data.
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Extra cells (shaded) obtained by processor 0 from neighboring processors.

There is a somewhat subtle issue relating to obtaining the same results each time the code
is run for the same problem which must be addressed.  Because more than one processor
will update edge values which lie on the grid partition boundaries, slightly different
values for the same edge may be generated by the different processors sharing the edge.
This possibility arises because even though they have identical geometry information
(node coordinates and elements definitions), they may use a different ordering of the
arithmetic operations to compute a new edge value.  Round-off errors will then cause
slightly different values to be produced.  When these different values are sent to other
processors through the message passing communication system, it is usually not feasible
to control the exact order in which messages arrive at another processor.  As a result of
this asynchronous behavior, the same code can produce different answers each  time it is
run even for the same problem.

This potential randomness can be overcome by developing a unique "ownership" strategy
for all of the problem variables.  We do this in a simple but effective way by decreeing
that an edge value is "owned" exclusively by the lowest numbered processor which
shares the edge.  This processor's value will then be the only value that will be used by
any other processor.  This strategy insures that with a constant partition of the grid and a
constant number of processor being utilized for the solution process, identical results will
be obtained each time the problem is run.  Changing the grid partitioning or the number
of processors being used may still give slightly different results.
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Vectorization Considerations

When using nonorthogonal unstructured grids, a heavy penalty in computational
efficiency can occur if sufficient care is not taken in structuring the computations and
data.  This will occur primarily because the inner-most loops involve a great deal of
indirect addressing and the data may be accessed in rather random patterns.  The basic
DSI3D time stepping loops consist of dot products of vector coefficients with a vector of
solution variables.  These dot products can and will vary in length and involve indirect
addressing.  These conditions usually defeat most vectorizing compilers.

We have found that most of this difficulty can be easily overcome by reordering and
regrouping the data so that much of it lies consecutively in memory.  We will rearrange
the data so that all of the data for dot products of the same length lie consecutively in
memory.  The next diagram shows the original inner loop for updating the electric field
edge projected values.  Next to it is shown the new inner loop restructured to gain more
efficiency.

The short, variable length inner loops that perform
the dot products limit performance on vector
computers

Sorting the variable update order by loop length
allows do-loop orders to be exchanged, leaving
very long inner loops

do L = 1, maxLLen

    i1 = firstHofLen(L)

do i = 1, hLen     i2 = firstHofLen(L+1) - 1

    hdot = 0.     j1 = firstHCofLen(L) - i1

    do j = ipth(i), ipth(i+1) - 1     j2 = firstHCofLen(L+1) - i1 - 1

        hdot = hdot + coefh(j)     do j = j1, j2, HLengthCount(L)

                   *eds(npth(j))         do i = i1, i2

    enddo             hds(i) = hds(i) + coefh(i+j)

    hds(i) = hds(i) - dt * hdot                           * eds(npth(i+j))

enddo         enddo

    enddo

enddo
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The performance improvement using this reordering and rearranging technique is
dramatic.  On a Cray C-90 single cpu, the performance on the original loop was about 15-
20 megaflops.  The rearranged data loop now performs at about 307 megaflops.  On the
Meiko CS-2 parallel processing computer the performance improves from about 5
megaflops to about 35 megaflops on each processor.  We have even observed that the
data restructuring also improves (to a lesser extent) the performance on scalar CPUs for
various other machines.
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Post-Processing

Post-processing for DSI3D is somewhat different than for most other codes.  This is in
part due to the fact that full electric and magnetic field vectors are almost never computed
in the code as a part of the basic solution algorithm.  Rather, projected field values onto
primary grid and dual grid edges are the basic quantities computed and used in DSI3D.
Also, since DSI3D has been designed as a parallel computer code, the data does not
reside all in one place in that it is distributed across many processors. Another fact is that
there is very little in the way of parallel graphics software available on almost any of the
parallel computers.

The philosophy that we have adopted is that we will do all graphics post-processing not
on the parallel computer but rather on workstations.  This has several important
implications.  First, since the performance and capacity on most workstations is rather
limited as compared to the parallel computer, it may not be possible to visualize all of the
data together in one place at one time.  Second, we will be required to develop software
which will run on the parallel computer which will form and extract the data we desire to
visualize.

We have developed a parallel post-processing tool called DSI3DIO which performs the
required tasks.  When DSI3D is run on a parallel computer, it will produce restart dump
files which contain the edge and dual edge data.  These files will exist on the separate
processors and/or their local disk space.  When DSI3DIO runs, it will read the original
grid files and extract sup-pieces of the original grid as specified by the user.  These sub-
pieces may be planar cuts through the grid or particular material types.  For the grid sub-
pieces, DSI3DIO then uses the data in the restart files to build or interpolate full vector
field data which will exist at the nodes of the grid sub-pieces.  The code will then produce
a reduced ascii grid file (which contains only the boundary cells of the region specified
by the user) and ascii files containing the vector field data for this reduced grid.
Currently, one can form electric field vectors, magnetic field vectors and Poynting vector
field data.  This data which will be much smaller than the entire problem data is then
moved to a workstation and can be visualized with many different graphics  software
packages.
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